Aeroscope SDK Linux

User Guide

2018.05

i

Contents

Introduction

Purpose

Intended Audience
Legends

References
Abbreviations and Terms

Aeroscope SDK Package

Installation

Environmental Requirements
SDK Package Extraction and Runtime Library Deployment

Running Examples

Main Processes and APIs

Main Processes
APIs for Sending and Receiving Data
APIs for Managing Aeroscope's Digital Certificates

Data Analysis
Msgld
MsgType
Transmitting Packet Data Structures

[ACTEN \CRE \C T \C IR \C R O]

o o0 o0 o

N N OO O

Introduction

Purpose

AEROSCOPE™ SDK is a software development kit that provides application programming
interfaces (APIs) to help users build a server with an Aeroscope unit.

This manual provides a simple guide for SDK users, allowing users to quickly understand the
SDK and its main processes and APls.

Intended Audience

This document is intended for users who are building their own server with an Aeroscope unit.

Legends

i Important
I Warning
X Error

References

File Name Description

Aeroscope SDK Reference Manual (English Version):
UavMonitorSdkLinux_Reference.chm | Provides a detailed reference for all APIs.
Included in the SDK package's Help directory.

Abbreviations and Terms

Term Description

Aeroscope A UAV detection system to identify, track, and monitor airborne drones.
API Application Programming Interface

SDK Software Development Kit

SSL Secure Sockets Layer, a network security protocol

UAV Unmanned Aerial Vehicle

DJI All Rights R ‘ 2

Aeroscope SDK Package

The Aeroscope SDK package is provided as a ZIP file.
The directory structure after extraction is as follows:
UavMonitorSdkLinux_V1.n.nn.nnn

F—Help

| —html

—1lib

— UavMonitorSdk

L— UavMonitorSdkExample

The detailed directory and file contents are as follows:
UavMonitorSdkLinux_V1.n.nn.nnn
—Help
| UavMonitorSdkLinux_V1.n.nn.nnn_Reference.chm
| UavMonitorSdkLinux_V1.n.nn.nnn ££F A .chm
\
— html
annotated.htm
-+ (More files)
index.htm
--(More files)
lib
libcrypto.so
libssl.so
libUavMonitorSdk.so
openssl.lic

|

\

|

|

\

|

|

\

—

|

\

|

|

\

— UavMonitorSdk
| build_env_ver.txt

\ UavMonitorSdkApi.h

\ UavMonitorSdkMsg.h

| ZytPal.h

\

L— UavMonitorSdkExample
main.cpp
UavMonitorSdkExample.pro
UavMonitorSdkExample.pro.user

Aeroscope SDK Linux

Descriptions for the main folders in the directory are as follows:

Folder Description

Help This folder contains Help files, including the reference manual.
This folder contains the SDK's shared library files (*.s0), which

lib need to be copied to the corresponding "lib" directory of the
Linux system.

UavMonitorSdk This folder contains the SDK's API-defined header files.

UavMonitorSdkExample | This folder contains an SDK application example.

Installation

Environmental Requirements

Refer to the "build_env_ver.txt" file in the "lib" folder of the SDK package for details about the
Linux SDK'’s production, installation, and operation environments.

The following shows an example of a "build_env_ver.txt" file:

Linux ubuntu 3.13.0-32-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014 x86_64
x86_64 x86_64 GNU/Linux

gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4

Qt Creator 3.0.1 based on Qt 5.2.1

OpenSSL 1.1.0f 25 May 2017

SDK Package Extraction and Runtime Library Deployment

Extract the SDK package and copy the runtime files to the system's run directory.

For example:
Copy the SDK's shared library files (*.so) to the "/usr/lib" directory.

Running Examples

The application example source code is in the "UavMonitorSdkExample" directory of the SDK
package.
Open "UavMonitorSdkExample.pro" with QT Creator, compile, and run.

DJI All Rights Reservec 4

Main Processes and APlIs

Main Processes

The following APIs are used for the processes described in the table:

API Description

InitSdk Initializes the SDK.

Configures the digital certificate and CA certificate for the
receiving server of the SDK.

Specifies the server TCP port and the application's data
processing callback function, then starts the receiving server.
StopUavMonitorListener Turns off the receiving server.

ExitSdk Exits the SDK and cleans up the environment.

InitUavMonitorListenerCer

StartUavMonitorListener

You can refer to the Aeroscope SDK Reference Manual for details of example source code
and further descriptions of the APls.

APIs for Sending and Receiving Data

To send data to a specified unit, you can use the SendToDevice API.

There are two ways to receive data:
¢ Callback function
® Polling

If a callback function is set when calling StartUavMonitorListener, a callback function is used.

Otherwise, if StartUavMonitorListener passes a null pointer to the callback function parameter,
polling is used. To receive data from all units through polling, use the ReceiveFromDevice
API.

APIs for Managing Aeroscope's Digital Certificates

Configure the Aeroscope's digital certificate to manage whether the unit is allowed to access
the receiving server.
The following APIs can be used to manage the digital certificates of Aeroscope:

API Description

AddUavMonitorCer Add laln Aeroscope certificate to allow this unit to access the

receiving server.

Delete an Aeroscope certificate, preventing this unit from

accessing the receiving server.

Modify an Aeroscope certificate, which means that the unit

SetUavMonitorCer must use the new certificate the next time to access the
receiving server.

DelUavMonitorCer

Data Analysis
Msgld

enum EloMessageld

{

eimildNone, /lI< 0
eimildUavlInfolnd, ///< 1, Device -> UAV Information Ind -> Server
eimildDeviceStatusind, /ll< 2, Device -> Device Status Ind -> Server

eimildReadDeviceSetting, /ll< 3, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildWriteDeviceSetting, /ll< 4, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildDeviceStatusLogind, ///< 5, Device -> Device Status Log Ind -> Server

eimildScanFregResultind, /lI< 6, Device -> ScanFreq Result Status Ind ->
Server

eimildDeviceBistInd, ///< 7, Device -> Device Bist Ind -> Server

eimildDevMacSetting, /l/< 8, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildDevVersion, ///< 9, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimild2DeviceHeartBeatInd, /l/< 10, Server -> ServerToDeviceReq -> Device

eimildEnterUpgradeMode, ///< 11, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildReceiveFirmwareDataTransferMode, /< 12, Server ->
ServerToDeviceReq -> Device -> ServerToDeviceAck -> Server

eimildFirmwareDataTransfer, ///< 13, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildFirmwareTransferDone, ///< 14, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildDevReboot, ///< 15, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server

eimildFirmwareUpgradeControl, /ll< 16, Server -> ServerToDeviceReq ->
Device -> ServerToDeviceAck -> Server
eimildFirmwareUpgradeStatusind, ///< 17, Device -> Device Firmware

Upgrade Status Ind -> Server
eimildClientCertValidind, /l/< 18, Device -> Device Cert Valid Ind -> Server
eimildClientSninvalidind, /l/< 19, Device -> Device SN Invalid Ind -> Server
eimildClientNotMatchind, /l/< 20, Device -> Device SN Not Match Ind -> Server
eimildGetVersionOrLog, ///< 21, Server -> ServerToDeviceReq -> Device ->
ServerToDeviceAck -> Server
eimildDeviceFirwareConsUpgradelnd, ///< 22, Device -> Device Firmware
consistency upgrade Ind -> Server
eimildNum /l/< maximum

IR

18 DJI All Rights Reservec 6

Aeroscope SDK Linux

MsgType

enum EloMessageType

{
eimtTypeNone, /ll< 0
/// Request from Server to Device
eimtTypeServerToDeviceReq, ///< 1, Server -> Req -> Device
eimtTypeServerToDeviceAck, ///< 2, Server <- Ack <- Device

eimtTypeServerToDeviceTimeout, ///< 3, Server <- ServerToDeviceReq
Timeout <- SDK
eimtTypeServerToDeviceError, /ll< 4, Server <- ServerToDeviceReq Error

<- SDK

/// Request from Device to Server

eimtTypeDeviceToServerReq, ///< 5, Device -> Req -> Server
eimtTypeDeviceToServerAck, ///< 6, Device <- Ack <- Server
eimtTypeDeviceToServerError, /ll< 7, SDK <- Error <- Server

/// Indication from Device to Server
eimtTypeDeviceToServerind, ///< 8, Device -> Ind -> Server
// Indication from Server to Device
eimtTypeServerToDevicelnd, ///< 9, Server -> Ind -> Device

/// Device Management from SDK to Server

eimtTypeDeviceArrival, /ll< 10, SDK -> Device Arrival -> Server
eimtTypeDeviceRemoval, /ll< 11, SDK -> Device Removal -> Server
eimtTypeDeviceFailure, /ll< 12, SDK -> Device Failure -> Server

eimtTypeDeviceRecovery, ///< 13, SDK -> Device Recovery -> Server

/// SDK Management from Server to Device

eimtTypeSdkError, ///< 14, SDK -> Error -> Server
eimtTypeSdkloControlReq, ///< 15, Server -> IO Control Req -> SDK
eimtTypeSdkloControlAck, ///< 16, Server <- 10 Control Ack <- SDK
eimtTypeNum /l/< maximum

Transmitting Packet Data Structures

Not yet available.

This content is subject to change.

Download the latest version from
http://www.dji.com/aeroscope

If you have any questions about this document, please contact DJI by
sending a message to DocSupport@dji.com.

© 2018 DJI All Rights Reserved.

Printed in China.

